Week 7 - Friday

COMP 2000




= What did we talk about last time?
= Debugging
= Tower of Hanoi



Questions?




Project 2




Tower of Hanoi




= The Tower of Hanoi is a mathematical puzzle invented by the
mathematician Edouard Lucas in the 19" century

= |tis a board with three rods

= On the first rod sits a stack of n disks in increasing order of size,
with the smallest disk on the top

= The goal is to move all of the disks to the third rod

= There are three rules:

1. You can only move one disk at once

2. Each move takes the top disk from one rod and puts it on the top of
another (possibly empty) stack on another rod

3. No larger disk may be placed on top of a smaller disk



= Professor Stucki has a wooden set you can play with

= It's fun to move the disks around, but how can we come up
with an algorithm that solves the problem?

= Recursion!



= Base case (n =1):

= If there is only one disk, move it to its destination
= Recursive case (n > 1):

= First move n—1disks to a temporary pole
= Then move the nt" disk to the destination
= Then move n—1 disks from the temporary pole to the destination



public static void hanoi(int n, char from, char to,

char temp) ({

’ Base Case
1if(n==1 )

System.out.println("Move disk from " + from +
" to " + to);
else {
hanoi(n - 1, from, temp, to);
hanoi (1, from, to, temp);
hanoi(n - 1, temp, to, from);

} Recursive
Case




= The recursion is pretty interesting

= You can prove that there's no faster way to do it than the
given approach

= Butit's very slow!

= 100 disks would take longer than the Universe has been in
existence, even on the faster modern computers

= How can we understand how long recursion takes?

= Take COMP 2100 and COMP 4500 to find out!



Merge Sort




= Beautiful divide and conquer algorithm
= Base case: List has size 1

= You're done!
= Recursive case: List has size greater thana

= Divide your list in half
= Recursively merge sort each half
= Merge the two halves back togetherin sorted order



public static void mergeSort(int [] array) ({

- (Empty)
if (array.length > 1) { Base Case

int[] a = new int[array.length/2];
int[] b = new int[array.length - a.length];
for (int i 0; i < a.length; ++i) //copy first half

al[i] = array|[i];
for(int 1 = 0; i < b.length; ++i) //copy second half
b[i] = array[i + a.length];

mergeSort(a); //sort first half
mergeSort(b); //sort second half
merge (a, b, array); ‘ _
} Recursive

Case



= The code to merge two sorted subarrays into a third array
trips up a lot of people

= Use three indexes, one for each array

= Always copy the smaller value from the two subarrays

= The tricky partis that you might no longer have anything left
to copy from a subarray

= At that point, you must copy from the other subarray

= In other words, always check the validity of an index before
using it



Merge code

public static void merge(int[] a, int[] b, int[] array)
int aIndex = 0;
int bIndex = 0;
for(int i = 0; i < array.length; ++i) {
if (aIndex >= a.length)
array[i] = b[bIndex++];
else if (bIndex >= b.length)

array[i] = a[aIndex++];
else if (a[aIndex] <= b[bIndex])
array[i] = a[aIndex++];

else
array[i] = b[bIndex++];

{




= | prefer the merging given on the previous slide

= Asingle for loop that fills the array makes sense to me

= I'm not a huge fan of using the postincrement operator
(aIndex++), but thisis what it's designed for:
= Getting a value and then incrementing it, all in a single line of code
= Otherwise, we'd need braces for the cases

= Note that you can combine the four seemingly repetitive
cases into three cases (but not two)

= Another way to do the merge is with three while loops,
given on the next slide



Merge code (alternative)

public static void merge (int[] a, int[] b, int[] array) {

int aIndex = 0;
int bIndex = 0;
int i = 0;

while (aIndex < a.length && bIndex < b.length) {
if (a[aIndex] <= b[bIndex])
array[i] = a[aIndex++];
else
array[i] = b[bIndex++];
++1;
}
while (aIndex < a.length) ({
array[i] = a[aIndex++];
++1;
}
while (bIndex < b.length) ({
array[i] = b[bIndex++];
++1i;




= Merge sort runs in time O(n log n)

= O(nlog n) is the fastest any comparison-based sort can run (in
the worst case)

= The code isn't too hard

= Know how to implement it for job interviews

= If you write bubble sort in a job interview, you don't deserve the job

= We gave a simple implementation, but a number of clever
things can be done to make merge sort go much faster in
practice



N-Queens Example




= Given an N x N chess board, where N = 4 it is possible to place
N queens on the board so that none of them are able to attack
each otherin a given move

= Write a method that, given a value of N, will return the total
number of ways that the N queens can be placed

o



= We will use recursion to place queens on the board, one row at
a time

= To save typing, we will use a loop to place the queen at each
different column within the row and then recurse

= Egad! A loop inside recursion!

= |t happens.

= |f we have placed queens on all the rows, we return 1 (a
successful placement)

= We sum up all the successful placements that our recursive
children make



= We can never have more than one queenin a
given row

= Instead of using a 2D array, we can just use a
1D array

= The array will record which column a queen
on a given row uses

= Thus, it will be an array of int values

= The array for the placement to the right

would look like:
{31 6/ 2/ 7/ 1/ 4/ OI 5}



= Base case: (row = 8)
= You have placed queens on rows 0-7

= Return 1 (a successful placement)
= Recursive case: (row < 8)

= Keep a sum of the successful placements made by placing in future
rows, initially o

= Try to place a queen on columns o-7

For each successful column placement, recursively try to place queens on the
next row and add those successful placements to your sum

= Return sum



= Asyou place a queen on a row, you'll need a method to check if it's safe
= |fitisn't safe, there's no reason to recurse

= We have set up our program so that no queens can ever be on the same row

= We still have to check previous rows to see if they have the same column or
diagonal

= Checking the column simply means seeing if the number inside the row is the
same

= Checking the diagonal requires more thought

= Use a method with the following signature, where board is the 1D array of
int values giving column locations and row is the row you're currently adding
to

public static boolean isSafe(int[] board, int row)

= You only need to look at the locations before row



Upcoming




= Spring Break!
= After Spring Break, finish N-Queens
= Start reading and writing text files



= Finish Project 2

= Due tonight by midnight!
= Start reading Chapter 20



	COMP 2000
	Last time
	Questions?
	Project 2
	Tower of Hanoi
	Tower of Hanoi
	Solving Tower of Hanoi
	Recursive solution
	Tower of Hanoi code
	Lessons from Tower of Hanoi
	Merge Sort
	Merge Sort algorithm (recursive)
	Merge Sort code
	Merging (the hard part)
	Merge code
	Merging
	Merge code (alternative)
	A few things about merge sort
	N-Queens Example
	N-Queens
	Problem solving approach
	Key observations
	N-Queens algorithm (recursive)
	Helper method
	Upcoming
	Next time…
	Reminders

