
Week 7 - Friday

 What did we talk about last time?
 Debugging
 Tower of Hanoi

 The Tower of Hanoi is a mathematical puzzle invented by the
mathematician Édouard Lucas in the 19th century

 It is a board with three rods
 On the first rod sits a stack of n disks in increasing order of size,

with the smallest disk on the top
 The goal is to move all of the disks to the third rod
 There are three rules:

1. You can only move one disk at once
2. Each move takes the top disk from one rod and puts it on the top of

another (possibly empty) stack on another rod
3. No larger disk may be placed on top of a smaller disk

 Professor Stucki has a wooden set you can play with
 It's fun to move the disks around, but how can we come up

with an algorithm that solves the problem?
 Recursion!

 Base case (n = 1):
 If there is only one disk, move it to its destination

 Recursive case (n > 1):
 First move n – 1 disks to a temporary pole
 Then move the nth disk to the destination
 Then move n – 1 disks from the temporary pole to the destination

public static void hanoi(int n, char from, char to,
char temp) {

if(n == 1)
System.out.println("Move disk from " + from +

" to " + to);
else {

hanoi(n – 1, from, temp, to);
hanoi(1, from, to, temp);
hanoi(n – 1, temp, to, from);

}
}

Base Case

Recursive
Case

 The recursion is pretty interesting
 You can prove that there's no faster way to do it than the

given approach
 But it's very slow!
 100 disks would take longer than the Universe has been in

existence, even on the faster modern computers
 How can we understand how long recursion takes?
 Take COMP 2100 and COMP 4500 to find out!

 Beautiful divide and conquer algorithm
 Base case: List has size 1
 You're done!

 Recursive case: List has size greater than 1
 Divide your list in half
 Recursively merge sort each half
 Merge the two halves back together in sorted order

public static void mergeSort(int [] array) {

if(array.length > 1) {
int[] a = new int[array.length/2];
int[] b = new int[array.length – a.length];
for(int i = 0; i < a.length; ++i) //copy first half

a[i] = array[i];
for(int i = 0; i < b.length; ++i) //copy second half

b[i] = array[i + a.length];
mergeSort(a); //sort first half
mergeSort(b); //sort second half
merge(a, b, array);

}
}

(Empty)
Base Case

Recursive
Case

 The code to merge two sorted subarrays into a third array
trips up a lot of people

 Use three indexes, one for each array
 Always copy the smaller value from the two subarrays
 The tricky part is that you might no longer have anything left

to copy from a subarray
 At that point, you must copy from the other subarray
 In other words, always check the validity of an index before

using it

public static void merge(int[] a, int[] b, int[] array) {
int aIndex = 0;
int bIndex = 0;
for(int i = 0; i < array.length; ++i) {

if(aIndex >= a.length)
array[i] = b[bIndex++];

else if(bIndex >= b.length)
array[i] = a[aIndex++];

else if(a[aIndex] <= b[bIndex])
array[i] = a[aIndex++];

else
array[i] = b[bIndex++];

}
}

 I prefer the merging given on the previous slide
 A single for loop that fills the array makes sense to me
 I'm not a huge fan of using the postincrement operator

(aIndex++), but this is what it's designed for:
 Getting a value and then incrementing it, all in a single line of code
 Otherwise, we'd need braces for the cases

 Note that you can combine the four seemingly repetitive
cases into three cases (but not two)

 Another way to do the merge is with three while loops,
given on the next slide

public static void merge(int[] a, int[] b, int[] array) {
int aIndex = 0;
int bIndex = 0;
int i = 0;
while(aIndex < a.length && bIndex < b.length) {

if(a[aIndex] <= b[bIndex])
array[i] = a[aIndex++];

else
array[i] = b[bIndex++];

++i;
}
while(aIndex < a.length) {

array[i] = a[aIndex++];
++i;

}
while(bIndex < b.length) {

array[i] = b[bIndex++];
++i;

}
}

 Merge sort runs in time O(n log n)
 O(n log n) is the fastest any comparison-based sort can run (in

the worst case)
 The code isn't too hard
 Know how to implement it for job interviews
 If you write bubble sort in a job interview, you don't deserve the job

 We gave a simple implementation, but a number of clever
things can be done to make merge sort go much faster in
practice

 Given an N x N chess board, where N ≥ 4 it is possible to place
N queens on the board so that none of them are able to attack
each other in a given move

 Write a method that, given a value of N, will return the total
number of ways that the N queens can be placed

 We will use recursion to place queens on the board, one row at
a time

 To save typing, we will use a loop to place the queen at each
different column within the row and then recurse
 Egad! A loop inside recursion!
 It happens.

 If we have placed queens on all the rows, we return 1 (a
successful placement)

 We sum up all the successful placements that our recursive
children make

 We can never have more than one queen in a
given row

 Instead of using a 2D array, we can just use a
1D array

 The array will record which column a queen
on a given row uses

 Thus, it will be an array of int values
 The array for the placement to the right

would look like:
{3, 6, 2, 7, 1, 4, 0, 5}

 Base case: (row = 8)
 You have placed queens on rows 0-7
 Return 1 (a successful placement)

 Recursive case: (row < 8)
 Keep a sum of the successful placements made by placing in future

rows, initially 0
 Try to place a queen on columns 0-7
▪ For each successful column placement, recursively try to place queens on the

next row and add those successful placements to your sum

 Return sum

 As you place a queen on a row, you'll need a method to check if it's safe
 If it isn't safe, there's no reason to recurse

 We have set up our program so that no queens can ever be on the same row
 We still have to check previous rows to see if they have the same column or

diagonal
 Checking the column simply means seeing if the number inside the row is the

same
 Checking the diagonal requires more thought
 Use a method with the following signature, where board is the 1D array of
int values giving column locations and row is the row you're currently adding
to

public static boolean isSafe(int[] board, int row)

 You only need to look at the locations before row

 Spring Break!
 After Spring Break, finish N-Queens
 Start reading and writing text files

 Finish Project 2
 Due tonight by midnight!

 Start reading Chapter 20

	COMP 2000
	Last time
	Questions?
	Project 2
	Tower of Hanoi
	Tower of Hanoi
	Solving Tower of Hanoi
	Recursive solution
	Tower of Hanoi code
	Lessons from Tower of Hanoi
	Merge Sort
	Merge Sort algorithm (recursive)
	Merge Sort code
	Merging (the hard part)
	Merge code
	Merging
	Merge code (alternative)
	A few things about merge sort
	N-Queens Example
	N-Queens
	Problem solving approach
	Key observations
	N-Queens algorithm (recursive)
	Helper method
	Upcoming
	Next time…
	Reminders

